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Abstract— Inspecting and maintaining industrial plants is
an important and emerging field in robotics. A particular
case is represented by the inspection of oil and gas refinery
facilities consisting of different long pipe racks to be inspected
repeatedly. This task is costly in terms of human safety and
operation costs due to the high altitude location in which
the pipes are placed. In this domain, we propose a visual
inspection system for unmanned aerial vehicles (UAVs), allowing
the autonomous tracking and navigation of the center line of the
industrial pipe. The proposed approach exploits a depth sensor
to generate the control data for the aerial platform and, at the
same time, highlight possible pipe defects. A set of simulated
and real experiments in a GPS-denied environment have been
carried out to validate the visual inspection system.

I. INTRODUCTION

The transport of fluids like steam, heating water and oil

or liquid chemicals is made through a network of pipelines.

Pipelines are typically grouped in a steel-framed structure

called pipe racks (see Fig. 1). Typically, pipe racks are

laid between different units in any chemical processing

or power plant and are placed on elevated locations to

preserve the ground space of the plant used for operators’

mobility. Pipelines must be regularly inspected to assess their

external/internal status. Their damage can be detected as a

weakening of the external covering or the corrosion of its

structure (i.e., rust on the pipe surface). Besides, damaged

pipes can cause dangerous situations like explosions or

chemical incidents. Pipeline cracks in oil and gas companies

produce financial loss and environmental pollution rather

than heavy casualties. For this reason, the early detection of

defective pipe sections plays a crucial role in preventing un-

necessary loss faced by oil and gas companies, ensuring safe

working conditions as well. However, pipe racks often extend

for miles and are located on elevated structures. Visually

inspecting all the sections of the pipes is an expensive and

demanding task. In particular, manual inspection of pipelines

can be done regularly, but it is time-consuming and unsafe
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Fig. 1: Pipe racks structures

in hazardous areas. In addition, expensive scaffolding should

be assembled to allow operators to reach inspection points.

In this context, using unmanned aerial vehicles (UAVs)

equipped with vision sensors represents a low-cost and

reliable solution to perform similar inspection tasks [1],

[2]. Aerial systems can follow the surface of the pipelines,

processing the information captured from a vision sensor to

detect eventual defects. Automating such a task is not trivial,

and different challenges must be addressed. First, the drone

should be able to see the pipe to inspect and consequently

follow its shape, regulating its position and orientation to

track the pipeline. At the same time, during the navigation

of the UAV, pipe defects must be detected. Different flaws

can be present in the pipe structure, both externally and

internally. In the latter case, the internal structure of the pipe

is corrupted, and its thickness decreases. Here, the defects are

detected using conventional non-destructive testing (NDT)

with ultrasonic probes in contact with the inspected surface.

Differently, our work focuses on external corrosion flaws

visible on the pipeline structures.

This work’s main contributions are the definition of a

computer vision technique to detect and characterize pipeline

structures, a UAV navigation strategy to track the pipes’

surface and a method to highlight pipe defects based on

vision data autonomously. A simulated case study using

different pipe shapes has been carried out based on ROS

and Gazebo [3], [4] simulator. Preliminary real-world ex-

periments in a GPS-denied environment have also been

performed to demonstrate approach effectiveness.

The remainder of the paper is organized as follows. In

Section II, a brief overview of related works is presented

while, in Section III, the sensor elaboration module to detect

and extract salient information on the pipelines is discussed

along with the UAV navigation controller strategy. Section IV

describes the system architecture and, finally, Section V

presents simulated and real-world experiments.
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II. RELATED WORKS

Pipelines damages can be caused by several natural and

artificial factors, like overgrown vegetation, material deteri-

oration or internal and external corrosion, among others [5].

Even though some of these causes are not predictable,

inspecting pipelines can be essential in early damage detec-

tion and preventive maintenance. In this context, nowadays,

pipelines are visually inspected or inspected by contact (i.e.,

using ultrasonic probes) with specialized operators walking

close to the pipes on pre-built structures [6].

For this reason, in this work, we propose a comprehensive

pipe inspection system that combines surface detection,

tracking, and defect detection. In this context, different

robotic and mechatronic solutions have been proposed to

simplify the inspection task [7] that can also work in direct

contact with the pipe surface. Robots that can directly walk

internally [8]–[10] or externally [11]–[15] the pipeline have

been developed. These robots can climb the surface to inspect

adhering to it due to particular magnetic mechanisms to

get information from the material integrity. For instance,

in [16], the authors proposed an open-source car-like robotic

platform to inspect internal pipe sections using an ultrasonic

sensor. These solutions are not helpful when the pipes are

placed in altitude locations due to the difficulties in reaching

the inspecting surfaces. Moreover, magnetic wheels can not

work if the tube presents external insulation. For this rea-

son, the most prominent technology adopted to accomplish

inspection tasks considers using UAVs. Aerial vehicles can

hover in the air and are highly versatile systems that have

been extensively used in different applications related to the

inspection of industrial plants [17], [18].

Several works propose UAV applications to inspect in-

dustrial pipes close to our domain. In [19], the authors

proposed a method to coordinate UAVs with maintenance

crews to alert when a failure is detected. However, only the

coordination phase between the ground crew and the UAVs is

considered. In [20], pipeline structures are used to improve

the localization performance of a UAV in the GPS-denied

environment of industrial facilities. There, only numerical

results were presented. A control approach to solving the

pipeline tracking problem is presented in [21], while an

application similar to the one presented in this paper is

proposed in [22]. In this latter work, authors rely on deep

learning techniques to segment the industrial pipes and gather

video data to analyze offline to detect structural defects and

the control of the UAV is not considered.

As for damage detection, many solutions have been de-

ployed exploiting different sensors. The most diffuse is

the camera sensors, like the one used in our application.

In [23] and [24], the authors develop a neural network to

detect corrosion in water, oil and gas pipelines. However,

only data elaboration is considered without considering the

pipe detection and tracking processes. Differently, we rely

on model-based approaches to assess the status of the pipe.

Other approaches consider the use of thermal camera sen-

sors [25], [26] or NDT performed with UAVs [27], [28].

III. MODULES DESCRIPTION

This paper presents a visual inspection system for UAVs

that enables autonomous detection and navigation along the

centre line of pipelines. The proposed approach exploits

an RGB-D camera that provides image and depth data to

generate control input for the aerial platform. Figure 2 shows

the reference frames of the system.

First, the pipe to inspect is detected and characterized.

To this scope, the location and the shape of the pipe must

be identified. This information is crucial for determining

the starting point of the inspection path and direction. This

information provides the initial inspection point for the

UAV. Then, the inspection is performed using a vision-based

approach, in which the drone follows the shape of the pipe

while capturing information from it using an inspection sen-

sor. To follow the shape of the pipe, the UAV is commanded

to maintain a path along the central axis of the pipe in the

inspection direction. In this context, the axis of the pipe is

extracted from the depth image, thanks to a combination

of image processing techniques based on distance and pipe

size parameters. The axis is then used to identify the next

position and orientation to which the drone should navigate.

This process is repeated for each camera frame to control

the drone’s motion throughout the entire inspection.

During the tracking process, the inspection sensor captures

data for defect detection. Specifically, we present a prelimi-

nary, straightforward approach to detecting corrosion.

(a) (b)

Fig. 2: Drone, inspection sensor and world reference frames.

Also, a pipe and first pose of the drone to start the inspection

are shown.

A. Pipeline detection and characterization

The location of the pipe and its shape must be extracted

from the depth sensor to start the inspection. One key aspect

of the proposed approach is the ability to divide the pipe

into different sections based on changes in shape and growth

direction. Such an aspect enables specific inspections at

different areas without the need for a full inspection of the

pipeline. This way, defects in certain pipeline areas could be

easily detected.

The first step is to cluster the different objects in the

point cloud using a region growing segmentation algorithm.

The point cloud is segmented into different clusters based

on the similarity of the angles between the points’ normal

within each cluster. The algorithm starts with selecting an

initial seed point and then iteratively adds nearby points with

similar characteristics to the seed point to the cluster. This
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(a) (b)

Fig. 3: Pipeline detection and sectioning process. (a) Visu-

alization of the point cloud of the scene. (b) Final result.

Spheres indicate the starting and ending points of each

section, and the arrows indicate their direction

algorithm helps identify the pipe in the point cloud data, as it

can effectively separate it from other environmental surfaces.

After this step, planar regions such as the floor and walls are

filtered out to eliminate noise and improve the accuracy of

pipeline localization.

In our system, the pipe structure is represented as a set of

cylinders, each identifying a distinct section of the pipe with

its own set of parameters. This method segments the pipe into

various sections based on variations in shape and direction

of growth. The process involves iteratively fitting cylinders

to each group of points and refining the cylinder parameters

until the entire pipe can be described as a combination of

cylinders. We use an algorithm based on random sample

consensus (RANSAC) [29] to fit the cylinders to the 3D

points of the cluster. The obtained cylinders are defined with

the following coefficients: a point in the cylinder axis, the

axis direction vector, and the estimated radius.

After modelling each section of the pipe as cylinders, the

boundaries of each section are determined by identifying the

point at which the axes of consecutive sections intersect,

based on their position in space, as illustrated in Fig. 3.

The tracking algorithm uses this information to determine

the drone’s starting position and the direction of its scan.

B. Pipeline tracking

The vision-based pipe tracking method proposed in this

work aims to monitor the central line of the pipe contin-

uously. This method begins with the drone reaching the

previously determined initial point of inspection, where the

direction is also estimated in the previous step.

To this scope, the pipe is segmented with respect to the rest

of the environment based on the depth information provided

by the RGB-D sensor. During the inspection, the sensor is

positioned close to the pipe. Therefore, the pipe is identified

as the object closest to the camera. The closest points to the

camera are selected from the depth information considering a

range of distances, discarding objects far from the camera or

small clusters due to sensor noise, including those between

the sensor and the pipe. After this process, a binary image

is obtained with the points belonging to this range (Figs.4a

and 4b), including points close to the pipeline that are not

necessarily part of it, see Fig. 4c. The image is processed

by applying an opening morphological operation to remove

small isolated pixels while preserving the overall shape of

the pipe.

Finally, when more than one cluster is generated, the

one with the most points is selected as the pipe. This is

done using connected component analysis, which labels each

connected component in the binary image and counts the

number of pixels in each component.

The result of this process is a binary image, known as the

mask image, in which the pixels associated with the pipe

are assigned a value of 1 and all other pixels are assigned a

value of 0 (see Fig. 4d).

(a) (b)

(c) (d)

Fig. 4: Process of obtaining the mask image of the pipe.

(a) RGB image. (b) Depth image. (c) Resulting image after

obtaining the nearest cluster to the camera. (d) Final result.

Pixels in white belong to the pipe.

Once the pipe is identified, the method extracts its central

axis. A thinning algorithm is applied to the binary mask to

obtain the skeleton (see Fig.5a). The thinning algorithm is

a morphological operation used to extract the centerline or

skeleton of an object in a binary image. It works by iter-

atively removing pixels from the object’s boundaries while

preserving the overall structure of the object. This is achieved

by using morphological operations such as erosion and dila-

tion to selectively remove pixels until a thinned version of the

object is obtained. However, the skeleton image obtained by

the thinning algorithm may contain noise and inaccuracies,

as can be seen in Fig. 5a. The distance transforms of the

binary image are being considered to enhance the precision

of the skeleton. The distance transform computes the shortest

distance from each pixel to the closest non-zero pixel, as

shown in Fig. 5b. This data is then employed to refine

the accuracy of the skeleton by eliminating pixels with low

distance transform values from the skeleton (see Fig. 5c).

After obtaining the skeleton of the pipe, the next step

is to improve the skeleton and obtain a more accurate

representation of the pipe’s axis. Our approach uses a 3-

degree polynomial fitting to approximate the skeleton points
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(a) (b)

(c) (d)

Fig. 5: Central axis extraction from pipe mask image and (a)

Result of thinning algorithm. (b) Result of distance transform

algorithm. (c) Pipe skeleton (d) Final result: Both skeleton

(blue line) and final axis (pink line) in mask image. Also,

green dot represents the tracking point.

according to equation 1.

y = a0 + a1x+ a2x
2 + a3x

3, (1)

describing the polynomial fitting method used. The input is

the skeleton of the pipe, which is represented as a set of

points. The output is a smooth curve that provides a more

accurate representation of the pipe’s axis. a0, a1, a2 and

a3 are the coefficients obtained by solving a linear least

square problem, which minimizes the sum of the squares

of the residuals between the data points and the polynomial

function. Once the polynomial coefficients are obtained, the

pipe axis pixels can be obtained by evaluating the polynomial

function for the range of skeleton values. The degree of

the polynomial affects the smoothness and precision of

the curve. A 3-degree polynomial was selected to find the

right compromise between the characteristics above for this

application. The choice of the independent variable (x or y)

in the polynomial function depends on the orientation of the

pipe in the image. This can be determined by comparing the

range of x and y coordinates.

The position and orientation of the drone to continue with

the tracking in the next instant are estimated starting from

this axis. For the position, one point is selected as the next

tracking point. Accurately predicting the next tracking point

during pipeline inspection is vital. Both the direction of the

inspection and the pipeline are considered to guide the drone.

The tracking point is selected in the direction of inspection

and in line with the pipe growth. This point on the axis is

transformed into a 3D point in the world reference frame

to guide the drone. This process is repeated for each frame

until the pipe inspection is complete. A pin-hole model is

assumed to model the camera. According to this model, the

vector pC
p ∈ R

3 describing the position of the point lying on

the pipe in camera frame C, recovered by using the 2D pixel

p(u, v) the depth value d(u, v) obtained from the depth map,

and the intrinsic parameters of the camera using

pCp,x = d(u, v)((u− cx)f
−1

x ),

pCp,y = d(u, v)((v − cy)f
−1

y ),

pCp,z = dinsp − d(u, v),

(2)

where (cx, cy) are the principal point of the camera and

(fx, fy) the focal length of the camera in the x and y

direction, respectively. Also, a minimum distance inspection

(dinsp) is set considering drone construction factors, such as

blade size, when determining the proximity distance to the

pipeline.

The process of transforming a 3D point in the camera

coordinate system to the world coordinate system involves

utilizing the following

pW

d = TW

B TB

Cp
C

p . (3)

This equation utilizes the extrinsic parameters of the camera,

which include the rotation and translation of the camera with

respect to the body frame of the drone B, represented by

the transformation matrix TB
C

, obtained during the mounting

of the camera on the drone. Additionally, the equation also

utilizes the transformation matrix TW
B

between the body

frame and the world frame W , which is provided by the

localization system. Combining these two transformation

matrices allows the desired point to be transformed into

the world coordinate system. Once the transformation is

complete, the resulting point in the world coordinate system,

represented by pW
d , is sent to the drone controller.

The desired yaw angle ψd, which allows the drone to face

the pipeline, is calculated based on the pipeline axis. The

angle between the camera’s z-axis and the pipeline direction

axis should be 90 degrees. The following equation

∆ψ = acos

(

vaxis × vforward

∥vaxis∥ ∥vforward∥

)

(4)

calculates the angle between the pipeline axis and the cam-

era’s forward direction. The pipeline axis is represented by

the vector vaxis, in the camera’s reference frame, and it is

obtained by subtracting the starting point of the axis from

its ending point in the 3D space. The forward direction of

the camera is represented by vforward, which is considered

to be unitary in the z direction, i.e. [0, 0, 1]. By adjusting

the current yaw angle of the drone with the calculated angle,

the drone can be oriented towards the inspected pipe. This

adjustment yields the desired yaw in the world reference

coordinate system.

C. Defect detection

Defect detection is performed using the data recorded

during the inspection. We present a straightforward approach

to detecting corrosion by processing the RGB image captured

during the inspection. In this work, our contribution mainly

considers the capacity of the UAV to highlight possible

corrupted areas of the pipe.

1186

Authorized licensed use limited to: UNIVERSIDAD DE OVIEDO. Downloaded on February 12,2025 at 18:06:56 UTC from IEEE Xplore.  Restrictions apply. 



Odometry RGB-D

Flight Control

SLAM

Defect
Detection

Pipeline
Detection

Pipeline
Tracking

Fig. 6: System architecture

The first step of the detection algorithm aims to remove

the colour of the pipeline from the image to identify potential

defects in the pipeline. The pipeline colour is assumed to be

the most frequent in the image and is used as a reference to

differentiate it from the potential defects.

The pipe mask obtained during the tracking is applied to

the RGB images only to retain the pixels corresponding to

the pipe. Then, a medium blur is applied to the pipe image

to reduce noise and smooth the image, which makes it easier

to identify the colour of the pipe. The HSV colour space is

considered to continue the image elaboration process. In this

context, the hue channel represents the pixel’s colour, while

the saturation and value channels represent the intensity

and brightness of the colour, respectively. By converting the

image to the HSV colour space, we can separate the colour

information from the saturation and brightness information,

which makes it easier to identify the colour of the pipe.

The k-means clustering algorithm is used to group the

pixels of the image into k clusters according to their colour

and find the predominant colour of the pipeline. The number

of clusters has been experimentally set to 4. The k-means

algorithm is a widely used technique for clustering, which

assigns each pixel to the cluster whose centroid (mean value)

is closest to it.

We assume that the most significant cluster corresponds to

the colour of the pipe, as it is the most frequent in the image

that is then removed to leave only the potential defects. The

output of the defect detection process is a new image in

which the potential defects of the pipe are superimposed, as

discussed in the case study section.

Once potential defects are identified, the next step is to

search for corrosion by characterizing its color in the HSV

color space and searching for corresponding color values

within the image of potential defects. A common range of

color values associated with corrosion is employed to achieve

this task.

IV. SYSTEM ARCHITECTURE

The system architecture is depicted in Fig. 6. The main

contribution of this work is grouped in the container with the

azure background. As for the autonomy of the aerial system,

the onboard Position Control module implemented on the

UAV autopilot is used. The UAV is equipped with a standard

PixHawk autopilot, running the PX4 control stack. The input

of this module is the current position (pW ) with respect to a

fixed frame, the heading orientation (namely, the yaw, ψ) and

the desired ones (pW
d , ψd), respectively. Running on onboard

autopilot, this information is used to generate the attitude

control signals used in the low-level control of the plat-

form. As for the estimated current position, inspection and

maintenance applications require precise vehicle localisation

during the operation. In almost all industrial scenarios using

a mobile robot, the global positioning system (GPS) is absent

or very degraded, which means that alternative localisation

methods are required to allow a drone to navigate in this kind

of environment. Stricter are the requirements on the accuracy

of the movements, and more critical becomes the role of

the position estimation algorithm. For this reason, alternative

state estimation systems are one of the most explored topics

in the mobile robots field. When localisation via GPS is not

reliable because the UAV operates in GPS-denied and GPS-

spoofed environments, like the domain considered in this

work due to the vicinity of iron structures, visual odometry

or SLAM techniques can be adopted.

The SLAM module of the system architecture fuses plat-

form motion odometry data with the depth sensor informa-

tion to generate the estimated position pW and orientation

ψ in the world frame. This information is exploited from the

detection and tracking modules to generate the desired point

to control the platform during the inspection task. In this

context, the UAV is equipped with an Intel T265 tracking

camera device 1 that directly provides an initial estimation

of the 6 DOF pose of the platform (i.e. the odometry).

Odometry is fused with the depth information from the

Realsense D435 2 depth sensor from the SLAM module. In

this work, RTABMap [30] module is used.

1https://www.intelrealsense.com/

tracking-camera-t265/
2https://www.intelrealsense.com/

depth-camera-d435/
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Finally, the estimated position, along with the sensor data

from the depth sensor mounted on the UAV frame, are

used firstly by the Pipeline Detection module to extract

information from the pipe structure and later by the Pipeline

Tracking module, which calculates the next point to navigate

to follow the pipeline surface. Finally, image data from the

depth sensor are used from the Defect Detection module of

the system architecture to check the quality of the pipeline.

V. CASE STUDIES

In order to evaluate the performance of the proposed

framework for pipeline inspection, several experiments were

conducted. The experiments were divided into two parts, sim-

ulation and real-world experiments.Video available online 3.

A. Simulations

The simulations were performed to experiment with dif-

ferent pipeline shapes and test the proposed approach in a

controlled environment. The Gazebo simulator was used to

replicate an environment with pipelines of various shapes,

as well as to simulate the drone and inspection system. The

aerial platform used in the simulation experiments is an Iris

quadcopter, and the inspection sensor is a RealSense D435.

The simulation environment and the simulated drone model

can be seen in Fig. 7.

Fig. 7: Gazebo simulation environment with multiple pipes

of different shapes.

Figure 8a shows the result of the pipe detection, where an

orange circle marks the point selected as the starting point

of inspection and an arrow points the direction in which the

drone is supposed to move for further tracking. Fig.8b shows

the path performed by the drone to reach the initial point of

the inspection.

The results of pipeline tracking with multiple pipelines in

the environment are presented in Fig.9. Instead, Figure 9a

shows the simulated environment in Gazebo with several

pipes one after the other. Figure 9b shows a frame captured

during the tracking process of the pipe closest to the camera.

The pink line represents the pipe’s central axis, which

has been extracted accurately by our algorithm. It can be

observed that even in the presence of multiple pipes in the

environment, the algorithm developed can correctly identify

and track the pipe closest to the camera. The green dot

3https://www.youtube.com/watch?v=f16qlqEjVc0

(a) (b)

Fig. 8: (a) Result of pipe detection. The orange circle

marks the point chosen as the initial point of inspection,

and the arrow marks the tracking direction. (b) Trajectory

visualization. The trajectory followed by the drone to achieve

the initial point of the inspection is shown in green.

represents the next tracking point selected from the centre

axis; in this case, the drone moves downwards.

(a) (b)

Fig. 9: Experiment with different pipes in the same scene.

The one in front is inspected. (a) Simulated scene in Gazebo.

(b) A frame during the tracking process. The pink line

represents the central axis of the pipe, and the green dot

is the next tracking point.

As shown in Fig. 10, additional simulations were con-

ducted to evaluate the performance of our algorithm on pipes

of different shapes. The first one, shown in Fig. 10a, involves

a pipe with a simple shape, while the second one, presented

in Fig. 10b, features a pipe with a more complex shape.

The results of both simulations demonstrate the drone’s

capability to effectively follow the central axis of the pipes,

enabling it to perform a comprehensive inspection. The

complete trajectory of the drone is illustrated in green in

both figures. These results further confirm the effectiveness

of our algorithm in tracking objects of varying shapes and its

potential for use in various industrial settings where accurate

pipe inspection is essential.

B. Real-case experiments

The real-world experiments were conducted to test the

proposed approach in a real-world scenario (see Fig. 11a).

A quadcopter with an RGB-D camera and a tracking camera

located at the front of the drone was used. As written before,

the sensors chosen are the Realsense D435 for the depth

information and a Realsense T265 for the tracking module.

The tracking camera gave the odometry feedback input to

RTABMap, which, using the information from the depth

sensors, computed the position of the base link of the drone
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(a) (b)

Fig. 10: The trajectory performed by the UAV to inspect the

pipe is shown in green in different experiments.

with respect to a fixed map frame. Figure 11b shows the point

cloud of the pipe and the trajectory of the base frame of the

drone during the experiment. The results obtained from the

real-world experiments are similar to the ones obtained in

the simulation environment.

(a) (b)

Fig. 11: Environment in which the actual experiments were

conducted. (a) The drone used and the pipe to be inspected

are shown. (b) Dense reconstruction of the pipe from SLAM

and drone base link

Figure 12 depicts the results obtained during a real-world

experiment involving the tracking of a pipeline. The pink line

represents the estimated central axis of the pipeline, which

serves as a reference point for the drone’s navigation. The

green dot, meanwhile, represents the next tracking point that

the drone uses to guide its movement along the pipeline. The

black dot in the centre of the image represents the centre

of the camera, and the goal is to align it with the axis so

that its next position is the green dot. These images visually

represent the drone’s progress as it moves along the pipeline.

C. Defect detection

Figure 13 presents the results of corrosion detection on

RGB images obtained during a real-case inspection process.

The image shows several areas of corrosion, which are

visible as discolouration or texture changes on the surface of

the material. The blue lines in the figure delimit the areas of

corrosion, making it easy to identify and quantify the extent

of the damage.

It is worth noticing that the proposed approach to detect

pipe defects represents a starting point with a relatively naive

method. It is based on the assumption that the pipeline colour

is consistent and distinct from the colour of the defects,

(a) (b)

(c) (d)

Fig. 12: Results obtained in real experiments during the

tracking of the pipeline. The pink line represents the central

axis of the pipeline and the green dot is the next tracking

point used to guide the drone.

(a) (b)

(c) (d)

Fig. 13: Corrosion detection results on RGB images obtained

during the inspection process in real-case experiments. De-

fects are delimited by the blue lines

so it can fail to accurately identify the pipeline colour in

certain situations, such as when the pipeline colour is not

consistent or when some reflections or shadows affect the

colour of the pipeline. In addition, it is only based on colour

information. If the pipeline colour is not distinctive from

the background, other information, such as shape or texture,

should be considered. With machine learning techniques, it

is possible to improve the accuracy and efficiency of the

detection process. For example, deep learning algorithms

such as convolutional neural networks (CNNs) can provide

a more robust and automated approach to identifying image
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defects.

Our approach can serve as a support tool for human

workers by providing them with a quick and easy way to

identify areas of corrosion on a surface. However, incorpo-

rating machine learning algorithms can increase the accuracy

and efficiency of the detection process, making it more

reliable and less dependent on human interpretation. With

machine learning, the system can learn to detect subtle signs

of corrosion that may not be visible to the human eye, and

it can also handle a large amount of data for large-scale

inspections. This can ultimately increase the effectiveness of

the inspection process and reduce the risk of human error.

VI. CONCLUSION

This work presents a visual-based system to track and

inspect industrial pipes using UAVs. The proposed approach

utilizes a depth sensor to generate control data for the aerial

platform to track the pipe following its central axis and detect

possible defects. The system has been validated through

a set of simulations and real experiments. The results of

our experiments demonstrate that the proposed system can

accurately track the central axis of the industrial pipe, allow-

ing the detection of defects. In particular, our work focuses

on external corrosion flaws. Further research is needed to

enhance the system’s accuracy and robustness, but this work

provides a solid foundation for future advancements in this

field. In addition, a more extensive evaluation with real-world

experiments involving more complex pipeline structures,

along with quantitative data, must be performed to better

assess the inspection system’s performance.
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